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Abstract

This paper investigates the upscaling method to the following parabolic equation:
0021-9

doi:10.

q Th
by the

* Co
E-m
otcþr � ðucÞ � r � ðDrcÞ ¼ f ðx; tÞ;
which stems from the application of solute transport in porous media. Because of the highly oscillating permeability of the
porous media, the Darcy velocity u hence the dispersion tensor D has many scales with high contrasts. Thus, how to cal-
culate the macro-scale equivalent coefficients of the above equation becomes the target of this paper. A new upscaling
method is proposed and studied via comparing with another upscaling method which was proposed in [Z. Chen, W. Deng,
H. Ye, Discrete Contin. Dyn. Syst. 13 (2005), 941–960]. The two different equivalent coefficients computing formulations
are based on the solutions of two different cell (local) problems, which one utilizes the elliptic operator with terms of all
orders while the other only uses the second order term. Error estimates between the equivalent coefficients and the homog-
enized coefficients are given under the assumption that the oscillating coefficients are periodic (which is not required by the
method). Numerical experiments are carried out for the periodic coefficients to demonstrate the accuracy of the proposed
method. Moreover, the upscaling method is applied to solve the solute transport in a porous medium with a random log-
normal relative permeability. The results show the efficiency and accuracy of the proposed method.
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1. Introduction

1.1. Research background

In this paper, we consider a two-dimensional horizontal aquifer where gravity effects are negligible. Assum-
ing that the aquifer porous medium has a constant porosity, the single-phase flow of an incompressible fluid
with a dissolved solute in a horizontal porous aquifer X 2 R2 over a time period J ¼ ½T 0; T 1�, is given by (see
[16])
�r � ðKerpeÞ ¼ r � ue ¼ q; x 2 X ð1:1Þ

and
oc
ot
�r � ðDerc� uecÞ ¼ f ; x 2 X; t 2 J ; ð1:2Þ
where q is the source or sink of fluid, KeðxÞ is the permeability tensor which is symmetric and positive definite
(assuming unit viscosity), pe is the fluid pressure, ueðxÞ ¼ ðuiÞ is the pore-scale velocity vector, cðx; tÞ is the con-
centration of the contaminant solute, and De ¼ ðdijÞ is the pore-scale dispersion tensor. Note that e is a small
parameter indicating the length of the small scales. The form of the diffusion–dispersion tensor De is given by
(see [16,32])
dij ¼ aTjuejdij þ ðaL � aTÞ
uiuj

juej ; juej ¼
ffiffiffiffiffi
u2

i

q
; ð1:3Þ
where aL and aT are the longitudinal and transverse dispersion coefficients respectively. In general aL � 10aT,
but this may vary greatly with different soils, fractured media, etc.

Owing to complex heterogeneity of natural media and scarcity of the available field data, the permeability
filed, KeðxÞ, is a randomly varying coefficient with potentially large contrasts. The direct numerical simulation
of these problems is difficult because of limited computer power and memory. On the other hand, in practice,
it is often sufficient to predict the macroscopic properties of the solutions to a certain accuracy. Thus, various
methods of upscaling or homogenization have been developed which approximate the original governing
equations by another, often of the same form, with known coefficients that can be solved with fewer comput-
ing resources (see the review papers [17,30,34] and references therein). The main idea of the upscaling methods
is to lump the small-scale details of the medium into a few representative macroscopic parameters or effective
parameters on a coarse scale which preserve the large-scale behavior of the medium. This idea is essentially the
same as the representative volume element method (RVE). Many kinds of multiscale methods have been done
based on similar ideas. See, for instance, the generalized finite element method [3,4], the multiscale finite ele-
ment method [15,22], the wavelet homogenization techniques [11], the multigrid numerical homogenization
techniques [27], the subgrid upscaling method [2], and the heterogeneous multiscale method [13,14]. We refer
the reader to [26] for an overview of the above methods.

However, to our knowledge, in the literature most of the upscaling methods are proposed to problem (1.1);
while, there are not so many works on how to derive an upscaling equation for the solute transport Eq. (1.2)
(see the books [21,28] for some works concerning the upscaling of convection–diffusion equation ). It is easy to
see that in our considered system, ueðxÞ hence DeðxÞ are strongly varying coefficients because of the variability
of KeðxÞ. Thus, how to find an equivalent equation to (1.2) in the macro-scale is still important for the simu-
lation of solute transport model. In this paper, we therefore focus our attention on (1.2), and try to give a
positive answer to how to calculate the upscaling (equivalent) coefficients for it.

In [8], a new upscaling method was introduced to solve the solute transport Eq. (1.2). The method incor-
porates the upscaling procedure into the implementing of the finite element method, which can be considered
as the implementation of the generalized finite element method (see [4, pp. 513–514]). We remark that the idea
to modify the original finite element equation (see [4, p. 513. Eq. (3.2)]) has been used in many other works
such as the finite element method based on the residual-free bubble method (or the variational multiscale
method, discontinuous enrichment method) [7,18,19,24,31]. The interesting part of the method proposed in
[8] is that the effective coefficients, both the diffusivity and velocity, are computed by using the solutions of
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the same local problems which are second order elliptic equations that only use the fine scale information of
the diffusion coefficient. In this paper, we give a different effective coefficients computing method based on the
solutions of the cell problems which use the fine scale information of the diffusion and convection coefficients
simultaneously. We found that this new method can be applicable to more general case and has a better per-
formance in accuracy. It has to be emphasized that the new method is also developed on the same idea as
above. However, it focuses on how to use the fine scale information to compute the effective coefficients, espe-
cially there is a convection term. We give the details of the implementing procedure which are new in our
opinion.
1.2. Understanding of the two-stage upscaling procedure

To (1.1), the main result of upscaling is often the block permeability, a constant tensor computed in each
grid block. In [17], the upscaling techniques are described as two-stage procedures. In the first stage – the fine
grid experiment – one or more fine grid problems are solved. In the second stage – the coarse scale calibration
– the fine grid solutions are used to determine the coarse scale properties. Via the two-stage procedure, an
effective representation of the permeability on a coarse mesh is found so that the large scale flow can be cor-
rectly computed on this mesh. The computational cost is thus greatly reduced. Following the two-stage pro-
cedure, we recall the so-called local Laplacian formulations here (see also [29,35]) and try to motivate the
upscaling method for the solute transport equation. The method is done as follows. In the first stage, for a
given grid block V, we solve the following equation:
r � ue ¼ 0; ue ¼ �Kerpe; x 2 V ;
with appropriate boundary conditions (see [35] for more details). Further, in the second stage, we define the
block (upscaling) permeability, eK, such that
eKhrpeiV ¼ �hueiV ; ð1:4Þ
where pe and ue are the solutions we computed in the first stage. Here h�iV represents the mean value of a func-
tion in the domain V, i.e.,
h�iV ¼
1

jV j

Z
V
ð�Þdx:
A rigorous analysis of the upscaling error between the effective permeability of the medium, K� and the block
permeability, eK is provided in the paper [35]. The local Laplacian methods are founded on the properties of K�

such that [25,35] (1) it is unique; (2) it is independent of the source term and of the boundary condition on oX;
and (3) it can be determined locally, i.e., to determine K� at a point x 2 X, one needs only to consider (1.1) in
the neighborhoods of x. An intrinsic connection between K� and eK is also given in [35, p.188].

Motivated by the above observation, we try to give a similar definition of the equivalent coefficients to Eq.
(1.2). Following the two-stage procedure, it is defined as follows. In the first stage, for a given grid block V, we
solve the following equation:
r � ve ¼ 0; ve ¼ uece �Derce; x 2 V ;
with appropriate boundary conditions. Further, in the second stage, we define the upscaling coefficients, eD
and ~u, such that
�~uhceiV þ eDhrceiV ¼ �hveiV ; ð1:5Þ

where ce and veðxÞ are the solutions we computed in the first stage.

We restate the key point here for the convenience of the reader (see [35, p. 188]). According to the homo-
genization theory, the effective coefficients, u� and D�, are defined through the following criteria [6,25]: for any
measurable V 2 X:
lim
e!0
hrceiV ¼ hrciV ; lim

e!0
hveiV ¼ hviV ; lim

e!0
ce ¼ c; ð1:6Þ
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where c and v are the solutions of the effective (or homogenized) equation
r � ðu�c�D�rcÞ ¼ r � v ¼ 0; x 2 V : ð1:7Þ

It is easy to see that ~u and eD are approximations of u� and D� respectively. More specifically, consider a point
x 2 X and grid block V 2 X containing x. From (1.5), (1.6) and (1.7), we have
hveiV � lim
e!0
hveiV ¼ hu�ciV � hD�rciV � u�ðxÞc�D�ðxÞrc;

hceiV � lim
e!0
hceiV ¼ hciV ; hrceiV � lim

e!0
hrceiV ¼ hrciV :
Hence, ~u � u�ðxÞ and eD � D�ðxÞ.
The outline of the paper is as follows. In Section 2 we introduce the new upscaling method for the model

problem. In Section 3 we give the error estimate for the proposed method. In Section 4 we give some numerical
examples in periodic case to verify the error estimates, and in Section 5 we apply our method to the solute
transport model with a practical random log-normal permeability to demonstrate the efficiency of the upscal-
ing method. Conclusions are drawn in the last section.

2. Upscaling formulations for model problem

In this section, we consider the following model problem:
�r � ðbeðxÞueðxÞÞ � r � ðaeðxÞrueðxÞÞ ¼ f ðxÞ; x 2 X;

ueðxÞ ¼ 0; x 2 oX;

�
ð2:1Þ
where X � Rd , d ¼ 2; 3 is a bounded polyhedral domain with a Lipschitz boundary oX, and e� 1 is a param-
eter that represents the ratio of the smallest and largest scales in the problem. Problems of the type (2.1) are
related to groundwater and solute transport in porous media (see [10]). For problem (2.1), we assume that
f ðxÞ 2 L2ðXÞ, aeðxÞ ¼ ðae

ijðxÞÞ is a symmetric, positive definite, bounded tensor satisfying
kjnj2 6 ae
ijðxÞninj 6 Kjnj2 8n 2 Rd ; x 2 X ð2:2Þ
for some positive constants k and K, and beðxÞ ¼ ðbe
i ðxÞÞ is a bounded vector.

Variational problem of (2.1) is to seek ueðxÞ 2 H 1
0ðXÞ such that
ðbeðxÞue þ aeðxÞrue;rvÞ ¼ ðf ; vÞ 8v 2 H 1
0ðXÞ: ð2:3Þ
Instead of solving (2.3) on a fine mesh with a mesh size resolving the small scale variability e, the goal of the
upscaling method is to find the solution of the corresponding macro-scale equation which may have the fol-
lowing form:
ð~bðxÞuþ ~aðxÞru;rvÞ ¼ ðf ; vÞ 8v 2 H 1
0ðXÞ:
We emphasize that in general case the coefficients ~a; ~b cannot be calculated analytically since ae; be do not have
the special structure such as periodicity to be used. Therefore we aim at how to calculate the upscaled coef-
ficients ~a and ~b; hence derive an ‘‘effective equation” to Eq. (1.2) and solve it on a coarse-scale mesh. To the
end, let Mh be a regular triangulation of X with mesh size h much larger than the e. Then, in each K 2Mh, the
upscaled coefficients ~a ¼ ð~aijÞ is a constant tensor, and ~b ¼ ð~biÞ is a constant vector, which are defined by the
following method.

UM1: Let pe
i ; i ¼ 1; 2; . . . ; d; d þ 1, be the solution of the problem
�r � ðbeðxÞpe
i þ aeðxÞrpe

i Þ ¼ 0 in K;

pe
i ¼ xi on oK;

ð2:4Þ
where xdþ1 ¼ 1. Then, ~a; ~b are determined by the following system:
~ahrpe
i iK þ ~bhpe

i iK ¼ haeðxÞrpe
i þ beðxÞpe

i iK ;
i ¼ 1; 2; . . . ; d; d þ 1:

ð2:5Þ
Here and in the following we call it as the upscaling method 1 and abbreviate it as UM1. We note here that the
above method is deduced by the idea we discussed in Section 1.2; see the formula (1.5). For comparison, we
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also recall the upscaling method proposed in [8] here and call it as the upscaling method 2 (abbreviate as UM2)
which is done as follows.

UM2: In each K 2Mh, let pe
i ; i ¼ 1; 2; . . . ; d, be the solution of the problem
�r � ðaeðxÞrpe
i Þ ¼ 0 in K;

pe
i ¼ xi on oK:

ð2:6Þ
Then, ~a is determined by the following system:
~ahrpe
i iK ¼ haeðxÞrpe

i iK ; i ¼ 1; 2; . . . ; d: ð2:7Þ

Further, ~b is computed by the following formulas:
~bi ¼ hbeðxÞ � rpe
i iK ; i ¼ 1; 2; . . . ; d: ð2:8Þ
Due to the definition of pe
i on the element boundary, we can give further simplification to the above computing

formulas. Indeed, the Green’s Theorem gives
hrpe
i iK ¼

1

jKj

Z
oK

xindr ¼ ei; i ¼ 1; . . . ; d;
where ei is the unit vector in the ith direction, and
hrpe
dþ1iK ¼

1

jKj

Z
oK

xdþ1ndr ¼ 0:
Thus, the formulas of UM1, in the case where d ¼ 2, can be rewritten as
1 0 hpe
1iK

0 1 hpe
2iK

0 0 hpe
3iK

0B@
1CA ~a11 ~a21

~a12 ~a22

~b1
~b2

0B@
1CA ¼ haeðxÞrpe

1 þ beðxÞpe
1i
0
K

haeðxÞrpe
2 þ beðxÞpe

2i
0
K

haeðxÞrpe
3 þ beðxÞpe

3i
0
K

0B@
1CA
which yields
~b1

~b2

 !
¼ ha

eðxÞrpe
3 þ beðxÞpe

3iK
hpe

3iK
ð2:9Þ
and
~a11

~a21

� �
¼ haeðxÞrpe

1 þ beðxÞpe
1iK � ~bhpe

1iK ; ð2:10Þ
and
~a12

~a22

� �
¼ haeðxÞrpe

2 þ beðxÞpe
2iK � ~bhpe

2iK : ð2:11Þ
Similarly, the formulas of UM2, in the case where d ¼ 2, can be rewritten as
~a11

~a21

� �
¼ haeðxÞrpe

1iK ;
~a12

~a22

� �
¼ haeðxÞrpe

2iK ; ð2:12Þ
and
~b1 ¼ hbeðxÞ � rpe
1iK ; ~b2 ¼ hbeðxÞ � rpe

2iK : ð2:13Þ

We will use the above formulas (2.9),(2.10), (2.11), (2.12), (2.13) in our later numerical experiments.

Remark 1. In both UM1 and UM2, ~a; ~b are well-defined. Moreover, for UM2, we can show that ~a is
symmetric positive definite and bounded. But for UM1, the symmetry does not hold. Our later numerical
experiments show that when e is small enough, the effective diffusive tenor will be asymptotically symmetric.
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Remark 2. When be is divergence free, the formula of ~b in UM1 is the same as that of UM2, namely, both of
them can be written as
~bi ¼ hbe
i iK ; i ¼ 1; . . . ; d: ð2:14Þ
Indeed, for UM1, since r � be ¼ 0, it is easy to check that pe
dþ1 	 1 in K, which follows (2.14) from (2.5) di-

rectly. For UM2, by use of Gauss Theorem, we have:
R
K beðxÞ � rpe

i dx ¼
R

oK be � nxidr

¼
R

K beðxÞ � eidx; i ¼ 1; . . . ; d;
which yields (2.14) immediately.
3. Error estimate for periodic coefficients

In this section, we give the error estimate to the introduced upscaling method. To do this, we assume that
aeðxÞ ¼ aðx=eÞ; beðxÞ ¼ bðx=eÞ ð3:1Þ

and
aijðyÞ; biðyÞ 2 C1
pðRdÞ; ð3:2Þ
where C1
pðRdÞ stands for the collection of all C1ðRdÞ periodic functions with respect to the unit cube Y. This

assumption allows us to use the homogenization theory to obtain the asymptotic structure of the solutions.
We emphasize that the spatial periodicity assumption does not a priori restrict the applicability of the results
only to media which do exhibit such strict repetitive spatial ordering in the properties of interest. The numer-
ical experiments in Section 5 indicate that our method works fine for the well-accepted random log-normal
permeability models in the engineering literature.

Under the assumptions (3.1) and (3.2), it is shown that ue converges to the solution of the homogenized
equation (cf. [6,25])
�r � ðb�uþ a�ruÞ ¼ f ðxÞ in X;

uðxÞ ¼ 0 on oX;
ð3:3Þ
where
a�ij ¼
1

jY j

Z
Y

aikðyÞ dkj þ
ovj

oyk

ðyÞ
� �

dy: ð3:4Þ
Here vj is the periodic solution of
�ry � ðaðyÞryv
jðyÞÞ ¼ ry � ðaðyÞejÞ; j ¼ 1; . . . ; d ð3:5Þ
with zero mean, i.e.,
R

Y vjdy ¼ 0. Furthermore,
b�i ¼
1

jY j

Z
Y

biðyÞ þ aik
og
oyk

ðyÞ
� �

dy; ð3:6Þ
where g is the periodic solution of
�ry � ðaðyÞrygðyÞÞ ¼ ry � bðyÞ ð3:7Þ
with zero mean, i.e.,
R

Y gdy ¼ 0.
Based on the above homogenization theory, we can show the following error estimate result for UM1.

Theorem 3.1. Given domain K with diamðKÞ ¼ h and ~a; ~b are computed by the formulations of UM1, then we have

the following error estimates:
a�ij � ~aij

��� ��� 6 C1hþ C2eþ C3

e
h
; i; j ¼ 1; . . . ; d ð3:8Þ
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and
jb�i � ~bij 6 C1eþ C2

e
h
; i ¼ 1; . . . ; d; ð3:9Þ
where C1;C2;C3 are independent of e and h.

We arrange the proof in the Appendix for the interested reader. Further, we state the error estimate result
for UM2 as follows (see [8, Lemma 4. and 5.]).

Theorem 3.2. Given domain K with diamðKÞ ¼ h and ~a; ~b are computed by the formulations of UM2, then we have

the following error estimates:
ja�ij � ~aijj 6 C
e
h
; i; j ¼ 1; . . . ; d ð3:10Þ
and
jb�i � ~bij 6 C
e
h
; i ¼ 1; . . . ; d; ð3:11Þ
where C is independent of e and h.

Remark 3. We note that the error estimate bounds of UM1 have two extra terms of h and e than UM2 does.
However, our later numerical experiments show that comparing to the error term e=h, the effect of the h term
is very small, and almost cannot be found in the tests. It seems that we overestimate the errors in the theoret-
ical proof.
4. Accuracy of UM1 and UM2

The aim of this section is to verify the error estimates (3.8), (3.9), (3.10), and (3.11). To do this, we consider
the model problem (2.1) in the domain X ¼ ð0; 1Þ 
 ð0; 1Þ, and assume that the coefficients aeðx1; x2Þ and
beðx1; x2Þ have the following periodic forms:
aeðx1; x2Þ ¼ Diagð1=½2þ P 1 sinð2pð2x1 � x2Þ=eÞ�Þ ð4:1Þ

and
beðx1; x2Þ ¼
1=½2þ P 1 sinð2pð4x1 � x2Þ=eÞ�
1=½2þ P 2 sinð2pðx1 þ 3x2Þ=eÞ�

� �
: ð4:2Þ
We fix P 1 ¼ 1:8; P 2 ¼ 1:6. Then the exact effective coefficients a� and b� can be calculated by the homogeniza-
tion method, see, e.g. (3.4), (3.6). They are
a�11 ¼ 0:629416; a�12 ¼ a�21 ¼ 0:258831; a�22 ¼ 1:017663; b�1 ¼ 1:147079; b�2 ¼ 0:833333:
It is known that the first step of the upscaling method is to get the solution of the local problem. We remark
here that the methods and error estimates we established in Section 2 and 3 are obtained under the assumption
that the solutions of the local problems are analytically given. However, for numerical computations, these
local problems have to be solved numerically. Therefore, it is important to analyze the error transmitted
on the macroscale by discretizing the fine scale (see [1] for some detailed discussion on this topic). In our tests,
the local problems (2.4) and (2.6) are solved on uniform triangle grids by using the Galerkin finite element
method with linear base functions. Denote hcell the size of triangle grids which we use to solve the local prob-
lems. The local problem discretizing error is fixed by keeping e=hcell to be constant. We denote h the considered
grid block size in the following. Our numerical experiments are stated as the following four cases.

4.1. Case 1. h ¼ e ¼ 1; hcell reduces

The goal of the first series of numerical experiments is to check up the resonance error e=h, which exists
generally in the upscaling methods [35]. To do this, we set h ¼ e ¼ 1 and reduce the hcell to improve the



Table 1
Convergence of UM1: ~a to a�, ~b to b�; ðe ¼ h ¼ 1Þ, hcell reduces

hcell j~a11 � a�11j j~a12 � a�12j j~a21 � a�21j j~a22 � a�22j j~b1 � b�1j j~b2 � b�2j
1/16 8.126e�02 2.576e�02 4.168e�02 1.397e�02 1.681e�03 3.771e�03
1/32 6.810e�02 1.725e�02 3.486e�02 1.023e�02 5.235e�03 3.175e�03
1/64 6.425e�02 1.505e�02 3.285e�02 9.289e�03 7.361e�03 3.150e�03
1/128 6.326e�02 1.449e�02 3.233e�02 9.048e�03 7.918e�03 3.167e�03
1/256 6.301e�02 1.435e�02 3.220e�02 8.988e�03 8.059e�03 3.173e�03
1/512 6.294e�02 1.432e�02 3.217e�02 8.973e�03 8.094e�03 3.175e�03
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accuracy of the local problem resolving. The errors of ~a and ~b compared to a� and b� are presented in Table 1
for UM1 and Table 2 for UM2 corresponding. From the tables we see that the errors do not convergence to
zero as grid refines. Evidently, the resonance error is dominating in this case (note that e=h ¼ 1). We also
notice that UM1 loses the symmetry of ~a while UM2 keeps well (note here e ¼ 1).

4.2. Case 2. h ¼ 1; e reduces, e=hcell ¼ 16

As shown by (3.8),(3.9), (3.10) and (3.11), one way of reducing the resonance error is to reduce the ratio e=h.
To show this, we set h ¼ 1 and reduce e from 1 to 1/32. Note that the discretization error of cell problems
solving is fixed in the test because e=hcell ¼ 16 is kept constant; hence, the error reduction is mainly due to
the decrease of the resonance error. The errors of ~a and ~b compared to a� and b� are plotted in Fig. 1 for
UM1, UM2 corresponding.

From the figure we see that the errors decrease as e reduces. We also notice that for UM1, ~a12 6¼ ~a21, the
symmetry does not hold. But, when e reduces, the error between ~a12 and ~a21 decreases. This point can also
be observed in the following tests where we keep e ¼ 1=32, hence ~a12 looks very close to ~a21.
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Fig. 1. Absolute error of UM1 (left) and UM2 (right).

Table 2
Convergence of UM2: ~a to a�, ~b to b�; ðe ¼ h ¼ 1Þ, hcell reduces

hcell j~a11 � a�11j j~a12 � a�12j j~a21 � a�21j j~a22 � a�22j j~b1 � b�1j j~b2 � b�2j
1/16 7.532e�02 3.762e�02 3.762e�02 1.889e�02 1.162e�02 5.652e�03
1/32 6.206e�02 3.103e�02 3.103e�02 1.551e�02 9.627e�03 4.813e�03
1/64 5.822e�02 2.911e�02 2.911e�02 1.456e�02 9.299e�03 4.649e�03
1/128 5.723e�02 2.861e�02 2.861e�02 1.431e�02 9.237e�03 4.618e�03
1/256 5.698e�02 2.849e�02 2.849e�02 1.424e�02 9.223e�03 4.611e�03
1/512 5.692e�02 2.846e�02 2.846e�02 1.423e�02 9.219e�03 4.609e�03
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4.3. Case 3. e ¼ 1=32, h reduces, e=hcell ¼ 12

In this case, the numerical experiments are done by fixing e ¼ 1=32 and reducing h from 2 to 1/48. All con-
sidered domains are squares with the center point located at (0.5,0.5). The results are depicted in Fig. 2 for
UM1, UM2 corresponding. Note that the discretization error of cell problems solving is still fixed in this case
by keeping e=hcellð¼ 12Þ constant.

It is obvious to see from the figure that the absolute errors of ~a and ~b compared to a� and b� increase when h

decreases. As shown by (3.9), (3.10) and (3.11), the error between b�i and ~bi of UM1 and the errors of UM2
should increase as h reduces, while for the error between a�ij and ~aij of UM1, in view of (3.8), there should have
an equilibrium point of value h to make the error achieve the minimum. Unfortunately, we have not found the
equilibrium point in our tests. This observation also shows that the resonance error is the leading error of
UM1 and the error bound h term of UM1 almost does not take any affection. To show this more clearly,
we design a series of experiments via reducing h and e simultaneously and keeping h ¼ e in the following case.

4.4. Case 4. hð¼ eÞ reduces, e=hcell ¼ 16

In this case, we only carry out the experiments for UM1. The hð¼ eÞ reduces from 1 to 1/32 and when e
reduces we also change hcell to keep e=hcell ¼ 16. All considered domains are squares with center point located
at (0.5,0.5). The results are listed in Table 3.

From the table we see that as hðeÞ reduces, the errors decrease slowly for ~a11 and ~a21, which is consistent
with the previous theoretical result, e.g. (3.8). While, the errors increase slowly for other terms, instead of
decrease as predicted by the error bound (3.8). However, when we move the considered squares to keep the
left and bottom edges located on the y- and x-coordinates instead of keeping the center point of the squares
10—2 10—1 100
10—5

10—4

10—3

10—2

10—1

100

h

ab
so

lu
te

 e
rro

r

UM1

error a
error a
error a
error a
error b
error b

10—2 10—1 100
10—5

10—4

10—3

10—2

10—1

100

h

ab
so

lu
te

 e
rro

r

UM2

error a
error a
error a
error a
error b
error b

Fig. 2. Absolute error of UM1 (left) and UM2 (right).

Table 3
Convergence of UM1 of ~a to a�, ~b to b� ðh ¼ eÞ. hðeÞ reduces

hðeÞ j~a11 � a�11j j~a12 � a�12j j~a21 � a�21j j~a22 � a�22j j~b1 � b�1j j~b2 � b�2j
1 9.727e�02 3.322e�02 4.847e�02 1.773e�02 2.782e�03 1.022e�03
1/2 9.409e�02 4.021e�02 4.692e�02 2.076e�02 3.744e�03 2.209e�03
1/4 9.290e�02 4.314e�02 4.627e�02 2.213e�02 6.605e�03 2.850e�03
1/8 9.240e�02 4.447e�02 4.598e�02 2.278e�02 7.929e�03 3.180e�03
1/16 9.218e�02 4.510e�02 4.584e�02 2.309e�02 8.563e�03 3.347e�03
1/32 9.211e�02 4.539e�02 4.576e�02 2.331e�02 8.856e�03 3.423e�03
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located at (0.5,0.5), the opposite results happen. Indeed, we found the errors increase slowly for ~a11 and ~a21,
while for others, the errors decrease slowly. The reason is not fully clear. Our tests show that these abnormal
tiny errors may be caused by the round-off error.

4.5. Study on symmetry of ~a for random coefficients

As shown in Sections 4.1–4.3, UM2 gives a symmetric effective diffusive tensor ~a, while UM1 does not. We
also notice that when e is small enough, the effective diffusive tensor generated by UM1 will be asymptotically
symmetric (see Figs. 1 and 2). In this subsection, we do some tests to investigate the symmetry of ~a via UM1
for the model problem with random coefficients. To do this, we first generate two random log-normal func-
tions k1ðxÞ and k2ðxÞ by using the moving ellipse average technique [12]. Then, we set
Table
Relativ

Relativ

l1 ¼ 0:
l1 ¼ 0:
l1 ¼ 0:
l1 ¼ 0:
aeðxÞ ¼ k1ðxÞE and beðxÞ ¼
k2ðxÞ

0

� �
;

where E represents the identity matrix in R2
2. A series of random functions k1ðxÞ and k2ðxÞ are generated by
choosing different correlation lengths l1; l2 and variance of the logarithm of the functions r2 (see Table 4).
With the same l1; l2 and r2, we generate k1ðxÞ in the domain ð�0:25; 1:25Þ 
 ð�0:25; 1:25Þ, and k2ðxÞ in the
domain ð0; 1Þ 
 ð0; 1Þ. Therefore k1ðxÞ and k2ðxÞ are different in the considered domain ð0; 1Þ 
 ð0; 1Þ. The ran-
dom functions are defined in the 1024
 1024 uniform mesh and the effective tensors are generated in the
64
 64 uniform mesh. Since there are no exact homogenized coefficients to be compared in this case and
the effective coefficients are different in each element of the mesh, we define the following relative error to indi-
cate the extent of the asymmetry of ~a:
4
e error between ~a12 and ~a21 for random coefficients

e Error r2 ¼ 0:5 r2 ¼ 1:0 r2 ¼ 1:5

1; l2 ¼ 0:01 0.71795 0.54662 0.50514
01; l2 ¼ 0:001 0.24894 0.17044 0.16941
001; l2 ¼ 0:0001 0.06148 0.04385 0.05073
0001; l2 ¼ 0:00001 0.01475 0.00797 0.00691

Fig. 3. The resolved velocity field ve
1ðxÞ. The ratio of maximum to minimum is 4.265e+05. Case l1 ¼ l2 ¼ 0:01.
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Relative Error ¼ 1

MiMj

XMi

i¼1

XMj

j¼1

Rij; ð4:3Þ
where Rij is defined in element ði; jÞ with
Rij ¼
j~a12 � ~a21j

ðj~a12j þ j~a21jÞ=2
; ð4:4Þ
and Mi and Mj represent the total numbers of elements in direction x1 and x2 respectively. Here Mi ¼ Mj ¼ 64.
The results are shown in the following table.

From the table, we see that when the correlation lengths l1; l2 reduce, the error between ~a12 and ~a21

decreases. We also notice that when the variance increases, the error decreases for most of cases. It sounds
that the higher oscillation of the coefficients, the better symmetry of the effective tensor, which is consistent
with the previous observation for the periodic coefficients.
5. Application to the solute transport problem

In this section, we consider the application of the discussed upscaling methods (UMs) to the solute trans-
port problem. For simplicity, the pore velocity veðxÞ is determined by the following partial differential equation
(the mass balance equation and Darcy’s law, e.g. [5]):
r � ve ¼ q; ve ¼ �KðxÞrp ð5:1Þ
in the domain X ¼ ð0; 1Þ 
 ð0; 1Þ with the following boundary conditions:
p ¼ 1 on Cin; p ¼ 0 on Cout; �KðxÞrp � n ¼ 0 on CN ;
where Cin ¼ fðx1; x2Þ : x1 ¼ 0; x2 2 ð0; 1Þg, Cout ¼ fðx1; x2Þ : x1 ¼ 1; x2 2 ð0; 1Þg, and CN ¼ fðx1; x2Þ : x1 2
ð0; 1Þ; x2 ¼ 0 or1g. The boundary conditions for the pressure Eq. (5.1) represent a flow from Cin to Cout with
noflow boundary conditions on CN . The source q is generated by the same method as that for KðxÞ (see below),
which is a random function. Thus, in the tests, the divergence of be (here ve) is not free. To solve the pressure
Eq. (5.1), we utilize the linear Galerkin finite element method. We remark that to solve the pressure equation,
it would be better to use the multiscale finite element method ([22]) or the mixed multiscale finite element
method ([9]).

For the solute transport Eq. (1.2), we impose the following initial condition:
cðx; 0Þ ¼ 1 in X;
which means the simulation starts with a homogeneously polluted aquifer. The boundary condition on Cin and
CN is imposed with
ðvec�DercÞ � n ¼ 0 on Cin [ CN ;
which causes a flow of clean water through the inflow boundary. At the boundary Cout, we demand zero dif-
fusive flux
�Derc � n ¼ 0 on Cout:
In our test, we choose the dispersivities aL ¼ 0:1; aT ¼ 0:01. We emphasize the above values of the dispersiv-
ities represent the general case (see [16]). The dispersion tensor De is computed via the formula (1.3).

Since there is no exact macro-scale solution for the random problem, we would compare the UM solutions
to the oscillatory solution of the original equation. To do this, we solve (1.2) with corresponding initial-bound-
ary conditions in a 1024
 1024 mesh which we denote as DNS1024 in the following. The obtained solution ce

h

is considered as the ‘‘exact” solution to compare with the UM solutions. The UM solutions, ~ch, are solved in a
coarse mesh ð64
 64Þ by UM1 and UM2 respectively. We also solve the Eq. (1.2) in a 64
 64 mesh without
doing upscaling procedure. That is to say, we do a direct numerical simulation in the coarse mesh, which
neglects the fine scale oscillation in each grid. This method is denoted as DNS64.
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As stated in Section 1, the oscillation of the velocity veðxÞ hence diffusion coefficient DeðxÞ comes from the
variability of the permeability KðxÞ. Thus, it would be meaningful to consider different cases of KðxÞ. Further,
geostatistical models often suggest that the permeability field is generically a log-normal random field. To this
end, we would like to consider the following two cases which represent isotropic and anisotropic heterogeneity
respectively.

5.1. Case 1. Isotropic heterogeneity

We generate the random log-normal permeability field kðxÞ by using the moving ellipse average technique
[12] with the variance of the logarithm of the permeability r2 ¼ 1:5, and the correlation lengths l1 ¼ l2 ¼ 0:01
(isotropic heterogeneity) in x1 and x2 directions, respectively. The ratio of maximum to minimum of one real-
ization of the resulting permeability field in our numerical experiments is 2:198eþ 09. Further, we choose the
relative permeability tensor as KðxÞ ¼ kðxÞE. The resolved velocity ve is strongly varying; for example, see
Fig. 3 below, where we depict the ve

1.
The concentration maps at times t ¼ 5 and t ¼ 12 are depicted in Figs. 4–7 for the methods DNS1024,

UM1, UM2, DNS64 respectively. It can be seen that UM1 gives a better approximation to DNS1024 than
Fig. 4. Concentration maps at t = 5 for DNS1024 solution (left map), and UM1 solution (right map). Case l1 ¼ l2 ¼ 0:01.

Fig. 5. Concentration maps at t = 5 for UM2 solution (left map), and DNS64 solution (right map). Case l1 ¼ l2 ¼ 0:01.
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UM2, and UM2 gives a better approximation than DNS64 does. To see this more clearly, we plot the contour
of the concentration ch (corresponding ce

h) at times t ¼ 5 and t ¼ 12 in Fig. 8. We observe that both UM1 and
UM2 solutions can capture the macro-behavior effectively while DNS64 gives an inaccurate approximation to
the ‘‘exact” solution.

In practice, it is also important to predict the total pollutant mass in the whole domain. So, can the UMs
capture the macro-quantity correctly? To answer this question, we compare the temporal decrease of the total
pollutant mass CeðtÞ for fine mesh and eCðtÞ for coarse mesh respectively, where (see [33])
Fig. 9.
red da
using D
version
CeðtÞ ¼
Z

X
ce

hðxÞdx; eCðtÞ ¼ Z
X

~chðxÞdx:
Fig. 10. The resolved velocity field ve
1ðxÞ. The ratio of maximum to minimum is 1.532e+07. Case l1 ¼ 0:1; l2 ¼ 0:01.
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The temporal decrease of the total mass CeðtÞ and eCðtÞ of UMs for isotropic heterogeneity. The black solid line stands for CeðtÞ, the
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NS64. Case l1 ¼ l2 ¼ 0:01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)
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We solve the problem to time t ¼ 20. The decrease curves are depicted in Fig. 9 for the DNS1024, UM1, UM2,
DNS64 respectively. We found that the eCðtÞ by UM1 gives an excellent agreement to CeðtÞ, and UM2 gives an
excellent agreement also but not as good as UM1. DNS64’s also looks good but worse than UM1 and UM2
do.

5.2. Case 2. Anisotropic heterogeneity

In this case, we generate the random log-normal permeability field kðxÞ with the correlation lengths l1 ¼ 0:1
and l2 ¼ 0:01 respectively, which represents the anisotropic heterogeneity. The ratio of maximum to minimum
of one realization of the resulting permeability field in our numerical experiments is 1:334eþ 09. Further, we
choose the relative permeability tensor as KðxÞ ¼ kðxÞE. The resolved velocity ve is extremely varying; for
example, see Fig. 10 below, where we depict the ve

1.
The concentration maps at times t ¼ 2 and t ¼ 5 are depicted in Figs. 11–14 for the methods DNS1024,

UM1, UM2, DNS64 respectively. Again, we can see that UM1 gives an excellent approximation to the
‘‘exact” soltion, while DNS64 cannot move the solute concentration correctly. This observation can also be
seen in Fig. 15 of the contour plots of the concentrations.
Fig. 12. Concentration maps at t = 2 for UM2 solution (left map), and DNS64 solution (right map). Case l1 ¼ 0:1; l2 ¼ 0:01.

Fig. 11. Concentration maps at t = 2 for DNS1024 solution (left map), and UM1 solution (right map). Case l1 ¼ 0:1; l2 ¼ 0:01.



Fig. 13. Concentration maps at t = 5 for DNS1024 solution (left map), and UM1 solution (right map). Case l1 ¼ 0:1; l2 ¼ 0:01.

Fig. 14. Concentration maps at t = 5 for UM2 solution (left map), and DNS64 solution (right map). Case l1 ¼ 0:1; l2 ¼ 0:01.
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Fig. 15. The contour plots of ce
h and ~ch at t ¼ 2 (left) and t ¼ 5 (right). The black solid line stands for ce
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using UM1, the red dash line stands for ~ch using UM2, the green line stands for ~ch using DNS64. Case l1 ¼ 0:1; l2 ¼ 0:01. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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We also compare the temporal decrease of the total pollutant mass CeðtÞ for fine mesh and eCðtÞ for coarse
mesh respectively. The decrease curves are depicted in Fig. 16.

6. Conclusions

We have successfully developed a new upscaling method for solving the linear convection–diffusion type
equations which arise in the studying of groundwater or solute transport in porous media. The main idea
of the method is to define new effective coefficients based on the solutions of the local problems. Two different
implementing methods are compared from error estimates to numerical experiments. The numerical tests of
periodic cases demonstrate the obtained error estimates. Random cases show that the two methods are robust
for more general cases. We emphasize that the numerical results show the upscaling method 1 (UM1) have a
better performance in accuracy than the upscaling method 2 (UM2) does, while UM2 is more simple and easy
to implement than the UM1.
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Appendix A

Proof of Theorem 3.1. For simplicity, we only consider the two dimensional case where d ¼ 2. We rewrite the
formulae of a�ij; b

�
i as the following matrix (vector) form:
a� ¼ 1

jY j

Z
Y

aðyÞðEþryvÞdy ðA:1Þ
and
b� ¼ 1

jY j

Z
Y

aðyÞrygdy; ðA:2Þ
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where E is the identity matrix and ryv ¼ ðryv1;ryv2Þ. Note that the integration of a vector or a tensor means
integrating each component separately. Furthermore, it follows from (3.5) that:
ry � ðaðyÞðEþryvÞÞ ¼ 0: ðA:3Þ

The following result (see [9, Lemma 4.9] or [15, Lemma 3.2]) will be used frequently in the next
discussion. h

Lemma A.1. Given domain K with diamðKÞ ¼ h, let UðyÞ 2 L1ðY Þ defined in Y be a Y-periodic function in y,

where Y is a unit cube. Then, we have
1

jY j

Z
Y

UðyÞdy � hUðx=eÞiK
���� ���� 6 Ceh�1;
where C is independent of e and h.

To prove the estimate (3.9), we introduce the following auxiliary function:
�pe
3 ¼ 1þ eg� ehe

3;
where g is defined by (3.7) and he
3 is the solution of
�r � ðaðx=eÞrhe
3Þ ¼ 0 in K;

he
3 ¼ gðx=eÞ on oK:

�
ðA:4Þ
It is easy to see that (cf. [23] or [9, Theorem 3.1])
krhe
3k0;K 6 Ch1=2e�1=2: ðA:5Þ
Moreover, we have
khe
3k0;1;K 6 C ðA:6Þ
by the Maximal Principle. The following lemma gives the H 1 and L1 errors between pe
3 and �pe

3.

Lemma A.2. There exists a constant C independent of e; h such that
krðpe
3 � �pe

3Þk0;K 6 Ce ðA:7Þ
and
kpe
3 � �pe

3k0;1;K 6 Ce: ðA:8Þ
Proof of Lemma A.2. From the weak formulas of (2.4) and (A.4), for any v 2 H 1
0ðKÞ, we have
ðaðx=eÞrpe
3 þ bðx=eÞpe

3;rvÞ ¼ ðb�;rvÞ;

and
ðaðx=eÞrhe
3;rvÞ ¼ 0:
Denote u ¼ pe
3 � �pe

3. Thus, we have
ðaðx=eÞru;rvÞ þ ðbðx=eÞu;rvÞ
¼ �ðaðx=eÞrðegÞ þ bðx=eÞ�pe

3 � b�;rvÞ
¼ �ðHðx=eÞ;rvÞ � eðbðx=eÞðg� he

3Þ;rvÞ;
ðA:9Þ
where HðyÞ ¼ ðHiðyÞÞ with
H iðyÞ ¼ aijðyÞ
og
oyj

ðyÞ þ biðyÞ � b�i :
From the definition of g, it follows that r �H ¼ 0, which yields:
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ðHðx=eÞ;rvÞ ¼ 0:
Hence, we have
ðaðx=eÞru;rvÞ þ ðbðx=eÞu;rvÞ ¼ �eðbðx=eÞðg� he
3Þ;rvÞ: ðA:10Þ
Thus, in view of (A.6), we have (see [20, Corollary 8.7,Theorem 8.16])
kruk0;K 6 Ce and kuk0;1;K 6 Ce;
which ends the proof of Lemma A.2. h

In the next part, we prove the estimate (3.9). From the definitions of b� and ~b (see (A.2) and (2.9)), we have
b� � ~b ¼ ha
erygþ beiY � haer�pe

3 þ be�pe
3iK

hpe
3iK

þ b�ðhpe
3iK � 1Þ � haerðpe

3 � �pe
3Þ þ beðpe

3 � �pe
3ÞiK

hpe
3iK

¼: Iþ II:
From (A.6) and (A.8), it follows that:
hpe
3iK ¼ h�pe

3iK þ hpe
3 � �pe

3iK ¼ 1þOðeÞ: ðA:11Þ

Hence, by use of Lemma A.2, it follows that:
jIIj 6 C1eþ C2

e
h
:

Thus, in view of (A.11), it suffices to estimate haerygþ beiY � haer�pe
3 þ be�pe

3iK . A simple calculation shows
haerygþ beiY � haer�pe
3 þ be�pe

3iK ¼ ðhaerygiY � haerygiKÞ þ ðhbeiY � hbeiKÞ þ ehaerhe
3iK � ehbegiK

þ ehbehe
3iK ¼: I1 þ I2 þ I3 þ I4 þ I5:
From Lemma A.1, it follows that jI1j 6 Ce=h and jI2j 6 Ce=h. Further, it is easy to see that jI4j 6 Ce and
jI5j 6 Ce.

The left task is to estimate jI3j. Let /e
i ; i ¼ 1; 2 be the solution of the problem
�r � ðaðx=eÞr/e
i Þ ¼ r � ðaðx=eÞeiÞ in K;

/e
i ¼ 0 on oK:

�
ðA:12Þ
It is easy to check that
/e
i ¼ eviðx=eÞ � ehi

v; i ¼ 1; 2; ðA:13Þ
where viðyÞ is defined by (3.5) and hi
v is the solution of
�r � ðaðx=eÞrhi
vÞ ¼ 0 in K;

hi
v ¼ viðx=eÞ on oK

(
ðA:14Þ
with (see [23] or [9, Theorem 3.1] also)
krhi
vk0;K 6 Ch1=2e�1=2: ðA:15Þ
Since /e
i 2 H 1

0ðKÞ, we obtain from the variational formula of (A.4) that
Z
K
rhe

3 � ðaðx=eÞr/e
i Þdx ¼ 0; i ¼ 1; 2:
Note here we have used the symmetry of aðx=eÞ. Thus, by use of (A.13), it follows that:
Z
K
rhe

3 � ðaðx=eÞryv
iÞdx ¼ e

Z
K
rhe

3 � ðaðx=eÞrhi
vÞdx; i ¼ 1; 2: ðA:16Þ
Denote rhv ¼ ðrh1
v;rh2

vÞ. Then, from (A.16), we have
Z
K

aðx=eÞrhe
3dx ¼

Z
K
rhe

3 � ðaðx=eÞðEþryvÞÞdx� e
Z

K
rhe

3 � ðaðx=eÞrhvÞdx ¼: I31 þ I32: ðA:17Þ
From (A.5) and (A.15) and the Cauchy–Schwartz inequality, we have
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jI32j 6 Cekrhe
3k0;Kkrhvk0;K 6 Ch:
For the term I31, in view of (A.3), integration by parts gives
jI31j ¼
Z

oK
he

3n � ðaðx=eÞðEþryvÞÞdr

���� ���� 6 Ch;
where n is the unit outward normal vector. Thus, we have
jI3j 6 C
e
h
:

The proof of the estimate (3.9) now is completed.
Next, we consider the errors between a�i1 and ~ai1, i ¼ 1; 2. The others can be obtained by the same discus-

sion. Denote �pe
1 ¼ x1 þ ev1 þ egx1 � ehe

1, where v1; g are defined by (3.5) and (3.7), and he
1 is the solution of
�r � ðaðx=eÞrhe
1Þ ¼ 0 in K;

he
1 ¼ v1 þ gðx=eÞx1 on oK:

�
ðA:18Þ
Similar to he
3, we have
krhe
1k0;K 6 Ch1=2e�1=2; khe

1k0;1;K 6 C: ðA:19Þ
Moreover, we have the following Lemma which gives the H 1 and L1 errors between pe
1 and �pe

1.

Lemma A.3. There exist constants C1;C2 independent of e; h such that
krðpe
1 � �pe

1Þk0;K 6 C1eþ C2h2; ðA:20Þ
and
kpe
1 � �pe

1k0;1;K 6 C1eþ C2h: ðA:21Þ
Proof of Lemma A.3. It is obvious that r � ða�rx1 þ b�hx1iKÞ ¼ 0. Thus, from the weak formulas of (2.4) and
(A.18), for any v 2 H 1

0ðKÞ, we have
ðaðx=eÞrpe
1 þ bðx=eÞpe

1;rvÞ ¼ ða�rx1 þ b�hx1iK ;rvÞ;

and
ðaðx=eÞrhe
1;rvÞ ¼ 0:
Denote w ¼ pe
1 � �pe

1. Thus, we have
ðaðx=eÞrw;rvÞ þ ðbðx=eÞw;rvÞ ¼ �ðaðx=eÞrðx1 þ ev1Þ � a�e1;rvÞ � ðaðx=eÞrðegx1Þ
þ bðx=eÞ�pe

1 � b�x1;rvÞ � ðb�ðx1 � hx1iKÞ;rvÞ
¼: R1 þ R2 þ R3: ðA:22Þ
Denote G ¼ ðGiÞ with
GiðyÞ ¼ ai1ðyÞ þ aik
ov1

oyk

ðyÞ � a�i1:
From the definition of v1, it follows that r �G ¼ 0 which yields R1 ¼ 0. The R2 term can be estimated by the
same way as that of Lemma A.2 ( see the proof of Theorem 3.1 in [8] for details). For the term R3, it is obvious
that
kx1 � hx1iKk0;K 6 Ch2 and kx1 � hx1iKk0;1;K 6 Ch:
Thus, in view of (A.19), we can show that (see [20, Corollary 8.7, Theorem 8.16])
krwk0;K 6 C1eþ C2h2 and kwk0;1;K 6 C1eþ C2h;
which ends the proof of Lemma A.3. h
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By use of Lemma A.3, it follows that:
hpe
1iK ¼ h�pe

1iK þ hpe
1 � �pe

1iK ¼ hx1iK þOðeþ hÞ:

Thus, from Lemma A.1 and (3.9), we have
~bhpe
1iK ¼ haerygþ beiKhx1iK þOðeþ e

h
Þ: ðA:23Þ
Finally, let’s prove the errors between a�i1 and ~ai1, i ¼ 1; 2. By use of (A.20), (A.21) and (A.23), a direct com-
putation shows
a�11

a�21

� �
�

~a11

~a21

� �
¼ ðhaeðe1 þryv1ÞiY � haeðe1 þryv1ÞiKÞ þ ðhaerygþ beiKhx1iK � hðaerygþ beÞx1iKÞ

þehaerhe
1iK þOðhþ eþ e

hÞ ¼: Q1 þQ2 þQ3 þOðhþ eþ e
hÞ
From Lemma A.1, it is clear that jQ1j 6 Ce=h. For Q2, a simple calculation shows
jQ2j ¼
1

jKj

Z
K
ðaerygþ beÞðhx1iK � x1Þdx

���� ���� 6 Ch:
Further, a same discussion as that of I3 yields that jQ3j 6 Ce=h. Thus, we obtain the estimate (3.8). The proof
of Theorem 3.1 now is completed. h
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